Интегрированное управление движением самолета

Транспорт сегодня » Связанные системы управления самолетом » Интегрированное управление движением самолета

Страница 1

Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.

Уравнения продольного движения в форме Лапласа запишутся в виде:

(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;

- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;

-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;

2.81364(α – υ) + sΔH = 0;

- ωz +sΔυ = 0.

Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.

В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:

Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.

1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:

2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:

3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:

4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:

Проектирование продольного движения с перекрестными связями:

Отсюда находим передаточные функции:

Тогда получим:

Передаточная функция = 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция =

6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция = 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Страницы: 1 2

Информация по теме:

Сооружения для пассажиров и служебные помещения
На станциях предусмотрены сооружения и устройства, предназначенные для обслуживания пассажиров вестибюли, коридоры, эскалаторы, лестницы, платформы, подземные переходы, автоматические контрольные пункты, разменные автоматы, кассы и др. Внутренняя планировка вестибюлей и других помещений предусматри ...

Индукционная закалка токами высокой частоты
Способ 1. Упрочнение коленчатого вала в ОАО «КАМАЗ-Дизель». Способ 2. Самостоятельное упрочнение с использованием установки индукционной нагревательной. Наиболее удобным вариантом будет применение шлифовального станка в качестве механизма вращения и отдельно установи ТВЧ, в качестве устройства упро ...

Ограждение места производства работ
Мер безопасности, предъявляемых к выполнению работ на железнодорожном транспорте, достаточно много и они разнообразны применительно к каждому ОВПФ, поэтому считаю необходимым в рамках данной дипломной работы остановится на некоторых из них. Всякое препятствие для движения поездов на перегоне должно ...

Разделы

Copyright © 2025 - All Rights Reserved - www.transpotrend.ru