Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.
Уравнения продольного движения в форме Лапласа запишутся в виде:
(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;
- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;
-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;
2.81364(α – υ) + sΔH = 0;
- ωz +sΔυ = 0.
Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.
В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:
Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.
1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:
2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:
3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:
4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:
Проектирование продольного движения с перекрестными связями:
Отсюда находим передаточные функции:
Тогда получим:
Передаточная функция
= 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
=
6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
= 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Информация по теме:
Классификация моторных масел по назначению и уровням эксплуатационных
свойств ACEA
Ассоциация европейских производителей автомобилей (Association des Constracteuis Europeen des Automobiles) - с 1 января 1996 года ввела свою классификацию моторных масел, которая с тех пор неоднократно обновлялась. Здесь приведена классификация, введеная с 22 декабря 2008 года. Требования европейск ...
Элементная база передающей части устройства
Устройство разрабатывается с использованием интегральных микросхем, что уменьшает его размер, упрощает монтаж, микросхемы имеют большой ресурс работы. Все использованные микросхемы выпускаются белорусским НПО «Интеграл». Ультразвуковые датчики В качестве ультразвуковых элементов используется компле ...
Развитие транспорта
В истории морского транспорта Европейского Севера России Северное (СМП г. Архангельск) и Мурманское морские пароходства (ММП), Архангельский и Мурманский морские порты - в 1918-1985 годах можно выделить три этапа развития. Первый этап - с 1918 по 195 8 годы, когда флот состоял из паровых судов на у ...