Уравновешивание двигателя

Силы инерции вращательно движущихся масс в однорядной звезде как и в одноцилиндровом двигателе, неуравновешенны и уравновешиваются противовесами:

двигатель давление газ нагнетатель

,

где - центробежная сила вращающихся частей равна:

- сила инерции от неуравновешенных частей равна:

(масса неуравновешенных частей вычислена при динамическом расчете на ЭВМ, см. табл. 2.2)

.

Рассмотрим вопрос уравновешивания сил инерции поступательно движущихся масс.

Если исходить из положения, что все шатуны в двигателе центральные, то силы и всех цилиндров соответственно равны. В этом случае результирующая сила инерции первого порядка будет представлять собой постоянный по величине вектор, приложенный к шатунной шейке коленчатого вала и вращающийся вместе с коленом. Он равен

,

где - поступательно движущаяся масса, относящаяся к одному цилиндру, =1,2кг;

Z – число цилиндров в одной звезде.

.

Такую силу легко уравновесить, добавив к противовесам соответствующую массу.

Определим вес противовесов для уравновешивания сил инерции вращательно-движущихся масс и сил инерции первого порядка поступательно движущихся масс:

В расчете веса противовесов предполагалось что оба противовеса одного веса но в реальности существует различие связанное с разьемной конструкцией коленчатого вала. Положение центра тяжести противовеса определено с помощью программы КОМПАС–V13. После установки противовесов неуравновешенность двигателя в основном будет определяться силой инерции поступательно движущихся масс второго порядка. Эта сила через мотораму передается на корпус ЛА вызывая его вибрацию. Для ее уменьшения применены амортизирующие подвески.

В действительности же вследствие разницы в массах шатунов и в кинематике поршней главного и боковых цилиндров результирующий вектор сил инерции первого порядка не постоянный по величине, а содержит переменную составляющую; конец вектора описывает эллипс (рисунок 3.8), большая ось которого совпадает с направлением оси главного цилиндра. Амплитуда переменной составляющей

,

где - - разность поступательно движущихся масс главного и бокового цилиндра:

.

Тогда в момент равна:

.

Рисунок 3.1 – Результирующий вектор сил инерции первого порядка

Прочностные расчеты

Расчет твердотельных моделей деталей, выполненных в пакете Solid Works, производится в пакете Cosmos Works.

В основу расчета заложен метод конечных элементов (МКЭ). Перед расчетом задаем материал деталей, условия закрепления по плоскостям и цилиндрическим поверхностям и производим разбиение твердотельной модели на сетку конечных элементов. Далее производим расчет на статическую прочность для поршня и пальца и расчет на устойчивость для шатуна.

Информация по теме:

Организация процесса обучения
Процесс подготовки водителей осуществляется в соответствии с примерными учебными программами, которые разработаны с учетом требований Федерального закона «О безопасности дорожного движения» и стандарта Российской Федерации по профессии «Водитель транспортного средства конкретной категории». Данные ...

Подробная разработка моторного цеха
Расположение цеха Моторный цех располагается в общем помещении с агрегатным цехом, рядом со слесарно-механическим цехом. Общая площадь цеха по предварительному расчету составляет 64м2. Назначение моторного цеха Цех предназначен для выполнения ремонта двигателей, механизмов и систем двигателя, подбо ...

Проектирование поперечного профиля
За исходную отметку для составления поперечного профиля земляного полотна принимаем отметку верха земляного полотна по оси главного пути, которая находится выше отметки бровки земляного полотна, указываемой в продольном профиле, на высоту сливной призмы. Для заданных сечений намечаем на масштабном ...

Разделы

Copyright © 2024 - All Rights Reserved - www.transpotrend.ru