Ультразвук - упругие колебания и волны с частотами приблизительно от 1,5— 2 Ч104 Гц (15—20 кГц) и до 109 Гц (1 ГГц).
Таблица 3
Диапазон частот ультразвука
Тип ультразвука |
Частота, Гц |
Ультразвук низких частот (УНЧ) |
от 1,5Ч104 до 105 |
Ультразвук средних частот (УСЧ) |
от 105 до 107 |
Ультразвук средних частот (УЗВЧ) |
от 107 до 109 |
Гиперзвук |
от 109 до 1012-13 |
Каждая из этих подобластей характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.
По своей физической природе ультразвук представляет собой упругие волны и в этом он не отличается от звука. Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения ультразвука. Так, для УЗВЧ длины волн в воздухе составляют 3,4Ч10-3—3,4Ч10-5 см, в воде 1,5Ч10-2—1,5 Ч10-4 см и в стали 5Ч10-2— 5Ч10-4 см. Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только УНЧ. Ввиду малой длины волны ультразвука на характере его распространения сказывается молекулярная структура среды, поэтому, измеряя скорость ультразвука и коэффициент поглощения, можно судить о молекулярных свойствах вещества.[11]
Измерение скорости ультразвука в твердых телах, жидкостях и газах указывают на то, что скорость не зависит от частоты колебаний или длины звуковой волны, т.е. для звуковых волн не характерна дисперсия. В твердых телах могут распространяться продольные и поперечные волны, скорость распространения которых находят с помощью формул:
, (2.1)
, (2.2)
где Е – модуль Юнга, G – модуль сдвига в твердых телах. В твердых телах скорость распространения продольных волн почти в два раза больше чем скорость распространения поперечных волн.
В жидкостях и газах могут распространяться лишь продольные волны. Скорость звука в воде находят за формулой:
, (2.3)
где K- модуль объемного сжатия вещества.
В жидкостях при возрастании температуры скорость звука возрастает, что связано с уменьшением коэффициента объемного сжатия жидкости.
Для газов выведена формула, которая связывает их давление с плотностью:
, ( 2.4 )
впервые эту формулу для нахождения скорости звука в газах использовал И. Ньютон. Из формулы (2.4) видно, что скорость распространения звука в газах не зависит от температуры, она также не зависит от давления, поскольку при возрастании давления возрастает и плотность газа. Формуле ( 2.4 ) можно придать и более рациональный вид: на основе уравнения Менделеева – Клапейрона:
, (2.5)
тогда скорость звука будет равна:
, ( 2.6 )
Формула ( 2.6 ) носит название формулы Ньютона. Рассчитанная с ее помощью скорость звука в воздухе составляет при 273К 280 м/с. Реальная же экспериментальная скорость составляет 330 м/с. Этот результат значительно отличается от теоретического и причину этого установил Лаплас. Он показал, что распространение звука в воздухе происходит адиабатно. Звуковые волны в газах распространяются так быстро, что, что созданные локальные изменения объема и давления в газовой среде происходят без теплообмена с окружающей средой. Лаплас вывел уравнение для нахождения скорости звука в газах:
Информация по теме:
Организация перевозок на автотранспорте
Определение количества автомобилей для освоения заданного объема перевозок Определяем количество автомобилей для освоения заданного объема перевозок по формуле: А= Q/Г*Yст*nоб , (1) Где Q – суточный объем перевозок, т/сут; Г – грузоподъемность автомобиля, Г=17 т; Y – статический коэффициент использ ...
Теоретические основы моделирования спроса на пассажирские авиаперевозки
Анализ спроса и потребления Спрос во многом определяет стратегию и тактику услуг авиакомпании. Исследование спроса, обоснованное планирование и прогнозирование его на краткосрочную и долгосрочную перспективу – одна из важных задач авиакомпании при изучении пассажирских перевозок. Анализ спроса и по ...
Установка предельных столбиков и светофоров
Пути на раздельных пунктах ограничивают предельными столбиками и светофорами. Предельный столбик устанавливается между сходящимися путями и указывает границу пути, за которую не должны выходить никакие части подвижного состава. Подвижной состав находящийся в пределах пути, ограниченных предельными ...