Гравитационный бетоносмеситель

Транспорт сегодня » Гравитационный бетоносмеситель

Бетоносмеситель – машина для приготовления однородной бетонной смеси механическим смешением ее составляющих (цемент, песок, щебень или гравий, вода). По характеру работы различают бетоносмесители цикличные и непрерывного действия. При приготовлении смеси в цикличном бетоносмесителе материалы загружаются порциями, причем каждая очередная порция поступает после того, как готовая смесь выгружена из корпуса бетоносмесителя.

В бетоносмесителе непрерывного действия загрузка материалов, их смешение и выгрузка готовой смеси происходят непрерывно, вследствие чего, их производительность превышает производительность смесителей циклического действия.

Основным параметром смесителей непрерывного действия является производительность. Перемешивание компонентов в гравитационных смесителях происходит в барабанах и внутренних стенках, к которым прикреплены лопасти. При вращении барабана смесь поднимается на некоторую высоту лопастями, а также силами трения, а затем сбрасывается вниз. Для обеспечения однородности смеси необходимо произвести 30-40 циклов подъема и сброса смеси в барабан.

Для обеспечения свободного перемешивания смеси в барабане, его объем в 2,5-3 раза должен превышать объем смеси. Скорость вращения барабана должна быть невысокая, так как в противном случае центробежные силы инерции будут препятствовать свободному перемещению смеси. Бетоносмесители изготавливают с наклоняющимися и стационарными барабанами. Эти барабаны выполняют грушевидной, конусной и циклической формы.

На заводах большой производительности (свыше 100 м/ч) применяют смесители непрерывного действия. Компоненты перемешиваются в циклическом барабане 1, Внутри которого по винтовой линии устанавливаются лопасти 3 при вращении барабана компоненты смеси, поступающие непрерывным потоком по загрузочной воронке 9, перемешиваются лопастями в окружном и осевом направлении. В результате чего они перемешиваются и непрерывно продвигаются к разгрузочному торцу барабана.

Бода подается в барабан по трубе 6, через распылитель 4. Барабан вращается двигателем 10. Через муфту 11, редуктор 12, зубчатое колесо 13, зубчатый венец 5, прикрепленный к барабану. Барабан свободно опирается бандажами 2 на ролики 7, установленные на раме 14. Осевым перемещениям барабана препятствуют опорные ролики.

Определение конструктивно-кинематических параметров.

Объем смеси, одновременно находящейся в барабане, м3

Vз = (Псм * t) / 3600

Vз = (100 * 120) / 3600 = 3,3

Где П – производительность смесителя (заданная), м3/ч; t – время перемешивания смеси, t = 120 сек. (Vз – более 500 л.).

Рабочий объем смеси в барабане, м3

VP = VЗ / KB

VP =3,3 / 0,67 = 4,925

Где KB – коэффициент выхода смеси (KB = 0,67)

Основные размеры барабана

Внутренний диаметр (м):

D0 = (0,78…0,83)*VP0,33

D0 = 0,83*4,9250,33 = 1,4

Толщина стенки барабана (м):

δ = (0,015…0,020)*D0

δ = 0,020*1,4 = 0,028

наружный диаметр (м):

DH = D0 + 2δ

DH = 1,4 + 2*0,028 = 1,456

LБ = (2,5…2,6)*D0 = 2,6*1,4 = 3,64

А = (1,75…1,78)*D0 = 1,78*1,4 = 2,492

С = (0,12…0,13)*D0 = 0,13*1,4 = 0,182

В = LБ – А – С = 3,64 – 2,492 – 0,182 = 0,966

Фактический геометрический объем барабана, м3

VГ = (π/4)* D02 * LБ

VГ =(3,14/4)* 1,42 * 3,64 = 5,6

Фактический коэффициент заполнения:

Ψфакт = VP / VГ = 4,925/5,6 = 0,88

(Ψ = 0,33…0,40)

При расхождении значений Ψфакт и Ψ рекомендуется изменить размеры барабана.

Изменяем внутренний диаметр барабана D0

D0 = 1,13 * VP0,33 = 1,13 * 4,9250,33 =1,9124

Толщина стенки барабана (м):

δ = (0,015…0,020)*D0

δ = 0,020*1,9124= 0,0384

наружный диаметр (м):

DH = D0 + 2δ

DH = 1,9124 + 2*0,0383= 1,989

LБ = (2,5…2,6)*D0 = 2,6*1,9124= 4,97

А = (1,75…1,78)*D0 = 1,78*1,9124= 3,41

С = (0,12…0,13)*D0 = 0,13*1,9124= 0,249

В = LБ – А – С = 4,97– 3,41– 0,249= 1,311

С’= (0,18…0,19)*D0 = 0,18*1,9124= 0,349

А’ = (1,75…1,78)*D0 = 1,78*1,9124= 3,31

В’ = LБ – А – С = 4,97– 3,31– 0,349= 1,311

Фактический геометрический объем барабана, м3

VГ = (π/4)* D02 * LБ

VГ =(3,14/4)* 1,91242 * 4,97= 14,27

Ψфакт = VP / VГ = 4,925 = 0,345

Размеры опорного бандажа и опорных роликов (каждый размер после его определения округляется до нормального линейного значения), м:

Диаметр опорного ролика

dp = (0,18…0,22)* D0 =0,22*1,9124 = 0,421 м

Ширина опорного ролика

bp = (0,32…0,36)*dp =0,36*0,421 = 0,151 м

Диаметр оси опорного ролика

d0 = (0,20…0,25)* dp = 0,25*0,421 = 0,105 м

Угол установки опорных роликов

β = 32…360 = 360

Толщина опорного бандажа

hБ = (0,024…0,026)*D0 = 0,026*1,9124 = 0,0497 м

Величина зазора между бандажом и барабаном

∆ = (0,005…0,01) = 0,01 м

Ширина опорного бандажа

bБ = bp + (0,04…0,05) = 0,151 + 0,05 = 0,2 м

диаметр опорного бандажа

DБ = D0 + 2*(δ + ∆ + hБ)

DБ =1,9124 + 2*(0,384 + 0,01 + 0,0497) = 2,1086 м

Информация по теме:

Техника безопасности на объекте проектирования
Ремонт автомобилей должен выполняться в соответствии с правилами технической эксплуатации подвижного состава автомобильного транспорта в предназначенных для этого местах (постах), оборудованных устройствами необходимых для выполнения установленных работ, также подъемно-транспортными механизмами, пр ...

Вероятностный метод расчёта
Для того чтобы правильно определить потребность в капитальных ремонтах автомобилей, недостаточно принимать во внимание только их количество, годовой пробег в среднем на один автомобиль и среднее значение межремонтного периода, как это предусматривается классической формулой (2.1). Для получения пра ...

Маркировка сформированного грузового места
Для перевозки груза была выбрана коробочная загрузка, теперь необходимо произвести маркировку коробок так, как показано на рисунке 18. Рис. 18. Маркировка коробок ...

Разделы

Copyright © 2024 - All Rights Reserved - www.transpotrend.ru