Контроль за посадкой и остойчивостью судна перед отходом, приходом и в плавании

Страница 1

Контроль за посадкой и остойчивостью на судне должен осуществляться непрерывно, ведь соблюдая это правило судну, грузу и экипажу будет обеспеченна стабильность в плавании. Ответственным за контроль упомянутых характеристик на судне является старший помощник капитана, производящий расчёты и подающий их на подпись капитану. Далее приведён детальнейший расчёт остойчивости и посадки судна, в соответствии с инструкциями «Информации по остойчивости судна» и с использованием соответствующих графиков. Расчёт является натуралистическим отражением загрузки судна.

Расчет посадки и начальной остойчивости по «Информации об остойчивости судна»

Произведём загрузку судна в соответствии с грузовым планом и составим специальные таблицы, но перед этим расшифруем следующую обозначения:

1) XG (LCG) - координаты горизонтальные центра тяжести от ахтерпика, м;

2) YG (TCG) - координаты поперечные центра тяжести от диаметральной пл-ти, м;

3) ZG (VCG) - координаты вертикальные центра тяжести от киля, м;

4) I* - момент от свободной поверхности, т∙м;

5) MX - статический момент относительно плоскости X, т∙м;

6) MY - статический момент относительно плоскости Y, т∙м;

MZ - статический момент относительно плоскости Z, т∙м.

В таблице 4.1 найдём моменты относительно плоскостей для судовых перекрытий:

Таблица 4.1 – Моментов судовых перекрытий

Перекрытие

Масса

(т)

XG (LCG)

(м)

YG (TCG)

(м)

ZG (VCG)

(м)

MX

(т∙м)

MY

(т∙м)

MZ

(т∙м)

Твиндек (II)

Крышки трюма

164,33

195

50,336

50,336

-0,032

-0,032

5,628

10,72

8271,715

9815,52

5,26

-6,24

924,85

2090,4

359,33

-

-

-

18087,235

-0,98

3015,26

В таблице 4.2 найдём моменты относительно плоскостей для каждого из грузов:

Таблица 4.2 – Моменты грузов

Масса

(т)

XG (LCG)

(м)

YG (TCG)

(м)

MX

(т∙м)

MY

(т∙м)

MZ

(т∙м)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

25,95

32,85

39,35

46,36

52,7

59,63

66,13

74,5

25,95

32,85

39,35

46,36

52,7

59,63

66,13

74,5

30,43

30,43

48,02

48,02

65.05

65.05

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-3,61

2,98

-3,61

2,98

-3,61

2,98

1557

1971

2361

2781,6

3162

3577,8

3967,8

4470

1557

1971

2361

2781,6

3162

3577,8

3967,8

4470

1825,8

1825,8

2881,2

2881,2

3903

3903

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-216,6

178,8

-216,6

178,8

-216,6

178,8

180

180

180

180

180

180

180

180

458,4

458,4

458,4

458,4

458,4

458,4

458,4

458,4

777

777

777

777

777

777

1320

-

-

64916,4

-113,4

9769,2

Страницы: 1 2 3 4 5 6

Информация по теме:

Выбор и расчет количества технологического оборудования, подъемно-транспортного оборудования и организационной оснастки
Количество сборочных стендов Хо, шт.: Хо =Тi/Фдо, где Тi – годовой объем конкретной работы, н.-ч; Фдо – действительный годовой фонд времени оборудования, ч; Хо =3744/3918,8=0,955 (шт), принимаем: Хо = 1 шт. Таблица 4 – Ведомость технологического оборудования Позиция Наименование оборудования Габари ...

Проверка надежности пуска двигателя механизма подъема
Среднепусковой момент Тср.п =Тст+Ти.п.+Ти.вр Ти.п. – момент от сил инерции поступательно движущихся масс Ти.вр - момент от сил инерции вращательно движущихся масс Раскрыв значения моментов определяем: Время разгона =1,02– момент инерции вращающихся масс быстроходного вала, кг*м2 =1,2 – коэффициент ...

Расчет временных характеристик взлетно-посадочных операций
Время, необходимое для взлета самолета можно рассчитать исходя из этапов выполнения операции по взлету: где – время выруливания с места ожидания на исполнительный старт, – время пребывания на исполнительном старте, – время разбега самолета, – время набора высоты. Движение ВС во время взлета проиллю ...

Разделы

Copyright © 2024 - All Rights Reserved - www.transpotrend.ru