Контроль за посадкой и остойчивостью судна перед отходом, приходом и в плавании

Страница 6

GZ(400) = KN(400)- ZG(суд.кор)∙sin(400) = 4,867 - 6,688∙ sin(400) = 0,5680 (м);

GZ(500) = KN(500)- ZG(суд.кор)∙sin(500) = 5,679 - 6,688∙ sin(500) = 0,5557 (м);

GZ(600) = KN(600)- ZG(суд.кор)∙sin(600) = 6,110 - 6,688∙ sin(600) = 0,3180 (м);

GZ(700) = KN(700)- ZG(суд.кор)∙sin(700) = 6,236 - 6,688∙ sin(700) = -0,0486 (м);

GZ(800) = KN(800)- ZG(суд.кор)∙sin(800) = 6,110- 6,688∙sin(800) = -0,4763 (м);

GZ(900) = KN(900)- ZG(суд.кор)∙sin(900) = 5,749- 6,688∙ sin(900) = -0,9390 (м).

Построенную диаграмму статической остойчивости можно найти в приложении Б. Одним из наиболее важным критериев достаточной остойчивости судна, который может быть найден с помощью ДСО, является плечо кренящего момента, из-за воздействия бокового ветрового давления при соответствующем угле крена. Данное значение находится по формуле с дальнейшим откладыванием его на оси GZ диаграммы статической остойчивости и нахождением угла крена.

hkw= (м) ;

где hkw – плечо кренящего момента из-за давления ветра при угле крена Fi; pw – боковое ветровое давление = 1,0 (кН/м2); А – боковая площадь парусности судна выше ватерлинии, найденная по диаграмме «Сумм ветрового действия» по значению средней осадки dm и равное 930 (м2); lw – дистанция от ватерлинии до центра парусности судна. Находится из той же таблицы по тем же значениям, и равна 7,4 (м); D – весовое водоизмещение судна, равное 5501,58 (т); dm – средняя осадка, равная 4,95 (м); Fi – данный угол крена.

Для построения дополнительной диаграммы hkw=f(Fi) и нахождения статического угла крена вычислим значение hkw для следующих углов: 00, 50, 100, 150.

Тогда:

hkw(00)==0,017∙9,875∙1=0,168(м);

hkw(50)==0,017∙9,875∙0,991=0,166 (м);

hkw(100)==0,017∙9,87∙0,97=0,162(м);

hkw(150)==0,017∙9,88∙0,93=0,155(м).

Т.о. в результате пересечения графиков hkw = f(Fi) и GZ = f(Fi) получаем значение статического угла крена равное Fi =13,5 . В соответствии с требованием Регистра судоходства Fi< = 180, именно этому требованию удовлетворяют наши расчёты (график смотри в приложении А). Далее с помощью ДСО подсчитаем значение начальной метацентрической высоты:

GM=KM- ZG ;

где GM - начальная метацентрическая высота;

KM - отстояние метацентра от киля. Находится из числовых таблиц, приведённых в «Информации» и выбирается в соответствии со значением D и dm. КМ = 7,137 (м); ZG - координаты вертикальные центра тяжести, равная

Тогда:

GM= 7,137 - 6,674 = 0,463 (м);

GMk= GM – dGM;

где GMk - начальная метацентрическая высота исправленная поправкой на влияние свободной поверхности, (м);

dGM - коэффициент коррекции для свободной поверхности, (т∙м); Тогда:

GMk = 0,463 - 0,0144 = 0,4486 (м) .

Необходимо отметить, что характеристика бортовой качки судна зависит напрямую от метацентрической высоты. Чем больше это значение, тем качка наблюдается более резкая, интенсивная, что отрицательно влияет на крепление груза и его целостность, а в целом и на безопасность всего судна.

Кривая зависимости работы восстанавливающего момента от угла крена называется диаграмма динамической остойчивости. Диаграмма можно и не строить, если начальная остойчивость судна удовлетворяет предъявляемым требованиям, но для определения некоторых параметров остойчивости судна удобно пользоваться именно этой диаграммой. Построим ДДО по следующему способу.

В таблице 4.11 указываю плечи динамической остойчивости GZd и построить график заполняется нижеследующая таблица:

Таблица 4.11 – Плечи динамической остойчивости

Плечо

Fi

00

100

200

300

400

500

600

700

800

900

GZ

0

0,0946

0,2806

0,456

0,5680

0,5557

0,3180

-0,0486

-0,4763

-0,9390

0

0,0946

0,4698

1,2064

2,2304

3,3541

4,2278

4,4972

3,9723

2,557

GZd

0

0,008

0,04

0,105

0,195

0,292

0,368

0,392

0,346

0,223

Страницы: 1 2 3 4 5 6 7 8

Информация по теме:

Изучение и оценка планируемого перехода в навигационном отношении
С учетом навигационных, гидрометеорологических и океанографических условий Навигационная безопасность плавания в значительной мере предопределяется качеством предварительной подготовки к переходу. Основная задача подготовки к переходу – спланировать и выполнить мероприятия, исключающие возможность ...

Упорный вал
В соответствии с пунктом 2.3 Правил Регистра диаметр упорного вара dуп в районе упорного гребня должен превосходить диаметр промежуточного dпр не менее чем на 10% dуп= 1.1 × dпр = 1.1 × 135 = 148.5 мм (2) Для дальнейших расчетов принимается dуп = 150 мм. Гребной вал В соответствии с ПСВ ...

Проверка валопровода на критическую частоту вращения
Для определения критической частоты вращения гребного вала при поперечных колебаниях валопровод условно заменяется двухопорной балкой с одним свешивающимся концом. Расчетная схема балки показана на рисунке 1. q2 A q1 B l2 l1 Рис. 1 – Схема нагрузки гребного вала А – середина подшипника кронштейна. ...

Разделы

Copyright © 2019 - All Rights Reserved - www.transpotrend.ru